Numerical Simulation of Evaporating Capillary Jets
— =00

by

Jason D. Zeda

A major report submitted to the
Department of Mechanical Engineering
of the University Of Hawaii at Manoa
in partial fulfillment of the requirements for the degree of

Master of Science

August 1999

DISTRIBUTION STATEMENTA j . 1 9990 8 2 7 0 86

d for Public Release
Approve >

DTIC QUALITY INSPECTED 4



To my wife Sheila and daughter Chelsea
And especially my Lord and Savior Jesus Christ



ABSTRACT
Numerical Simulation of Evaporating Capillary Jets
Jason D. Zeda

Advisor: Dr. Farzad Mashayek

A detailed numerical study of evaporating capillary jets is presented. The analysis is
performed through use of a Galerkin finite element method with penalty formulation for solving
the equations of motion and a flux method for tracking the free surface.

A parametric study is performed to analyze the temporal instability of the evaporating jet.
Through varying the evaporation rate, Reynolds number, disturbance wavenumber, initial
disturbance amplitude, and density ratio the outcomes of jet breakup are investigated. Also,
pressure distribution inside the jet and multiple satellite drop formations are analyzed. Results
are compared to existing analytical conclusions made from linear stability analysis.

This study reveals that surface evaporation has a destabilizing effect for the low-speed
jets, which are considered here. That is, evaporation flux is greater at the neck than the crest,
which accelerates the wave growth. Satellite drops also reduce in size as evaporation rate is
increased. This reduction is seen in both the radial direction due to vapor leaving the surface and

along the axis of symmetry due to decreased breakup time.
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Nomenclature

specific heat

height function
identity matrix
wavenumber

jet curvature

length

latent heat of vaporization
evaporation flux
outward unit normal
shape factor
pressure

Prandtl number

evaporation rate/length

radial coordinate
instantaneous radius
Reynolds number
density ratio

time

temperature
Newtonian stress tensor
jet axial velocity
free stream velocity
radial velocity
velocity vector
volume

velocity vector
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1. Introduction

The instability of liquid jets has been a classical fluid mechanics problem for more than a
century. Early investigations focused primarily on understanding the mechanisms of jet breakup
while recent jet instability studies have concentrated on more accurate predictions of growth rate,
drop size after breakup, and effects due to variations in initial disturbance amplitude, disturbance
type, and fluid properties. Despite extensive previous studies cited in the literature and briefly
reviewed below, it has been only recently that the dynamics of a jet undergoing surface
evaporation has been investigated by Lian and Reitz (1993) using a linear stability analysis.
While this study reveals several new and interesting phenomena, it is, understandably, unable to
predict accurate results near the breakup point due to the assumption of infinitesimal perturbation
of the liquid jet.

The objective of the present work is to relax some of the assumptions adopted by Lian
and Reitz (1993) and to provide a more versatile computational analysis of evaporating jets by
implementing a Galerkin finite element method in conjunction with a height flux method (HFM)
for interface tracking, which was developed by Mashayek and Ashgriz (1993). The
dimensionless continuity and momentum equations are solved on a moving mesh consisting of
four-node quadrilateral elements. Considering an axisymmetric incompressible Newtonian
liquid jet of infinite length initially subjected to a periodic surface disturbance a pérametric study
is performed to show how evaporation affects capillary jet instability while varying liquid
Reynolds number (Re), disturbance wavenumber (k), disturbance amplitude (€,), evaporation rate
(B), and density ratio (s). Similar to Lian and Reitz we focus on the temporal evolution of the jet
thus only one wavelength is examined at a time - in practice, we solve for only one half of this

wavelength due to the symmetry of the jet. Also similar to Lian and Reitz (1993), the surface



evaporation of fhe perturbed jet is approximated by that of a spherical drop with the identical
curvature as the local surface curvature of the jet. In this manner, there is no need to solve for
the gas phase.

The observation that a liquid jet issuing from a nozzle will eventually breakup into small
drops when subjected to even minute disturbances led Rayleigh (1879) to provide the first
analytical description for the temporal instability of an inviscid, incompressible jet using a

normal mode analysis. He showed that an axisymmetric harmonic disturbance of the form:

N =¢, explt —ikz), (1
would grow in time according to:
1(k) 12
o=| 21—k k| )
1,(k) |

where o is the growth rate, ¢ is the time, and I, and I; are the modified Bessel functions of the
first kind. In (1) and (2), length and time variables have been non-dimensionalized by r, and
To/ve, Where V. is the capillary-wave velocity (6/pr,)”. Here, r, is the undisturbed radius of the
jet, o is the liquid surface tension coefficient, and p is the density of the liquid. This result
predicts that disturbances grow in time for k<1 and oscillate for k>1, and the maximum growth
rate occurs at k=0.697. In other words, if the wavelength (A=27r,/k) of an axisymmetrical
disturbance is greater than the cylinder circumference the jet will be unstable and if the
disturbance wavelength is less than the cylinder circumference the jet will be stable.

For over a century since Rayleigh noticed that surface tension had to work against inertia
in causing instability researches have continued to extend his work in both theoretical and
experimental realms. For example, viscous effects have been considered by Weber (1931), who

analyzed the motion of thin sections of fluids, and Chandrasekhar (1961), whose book focused



solely on the subject of instability using the Navier-Stokes equation to examine it. To test the
results of linear theory quantitative experiments were performed by such researchers as Goedde
and Yuen (1970). The experiments clearly identified that drop size varied at breakup leading to
the conclusion that nonlinear behavior became dominant during instability. Yuen (1968) was the
first to extend Rayleigh’s linear analysis by considering a third-order perturbation expansion,
which would give some explanation of the production of satellite drops between the larger main
drops. Further experimental investigation of both sat¢11ite and main drops have been done by
Vasallo and Ashgriz (1991) and Kowalewski (1996), which looked at the production of multiple
satellites and the description of the jet surface near breakup, respectively.

Due to recent development of computational facilities and numerical techniques flow
simulations have become common plaée. Inviscid flow was studied by Mansour and Lundgren
(1990) and Stokes flow has been considered by Stone and Leal (1989). These two simplifying
factors breakdown close to breakup because both viscous and inertial effects become important.
In this case the full Navier-Stokes equation has to be considered in the fluid domain. A finite
difference one-dimensional model was considered by Eggers and Dupont (1994) to simulate drop
formation. The most extensive study of jet breakup using the Navier-Stokes equation was
performed by Ashgriz and Mashayek (1995) using a Galerkin finite element method. For a
review of the computational methods used for free surface flows see Tsai and Yue (1996).
Further reviews of the problem of jet instability are given by Bogy (1979) and more recently by
Eggers (1997).

Unfortunately, little mention is made about evaporating jets when studying the problem

as a whole. This is primarily due to the complexity of determining an evaporation equation for



an irregular shaped surface. Hopefully future experimentation will be performed to verify the

spherical model used herein.

2. Formulation and Methodology

Consider a viscous liquid circular jet injected with velocity U into an inviscid gas at
temperature 7., in zero gravity. Since we are dealing with interactions of the gas with only one
Jet, it can be assumed that the total heat capacity of the gas is much larger than that of the liquid
and T.., far from the surface of the jet, is constant. The implementation of an evaporation model,
described below, eliminates the need for the solution of the energy equation; thus the governing
equatioﬁs include only mass and momentum conservations. Assuming both the liquid and the
gas are incompressible with constant properties, these equations are described as:

V.w, =0, 3)

ow,
—+w,-Vw,

ot i~ _LVP,- +V1V2wi’ i=lg @)

1

where [ and g stand for liquid and gas, respectively. In (3) and (4), w, p, p, and v denote the

velocity, pressure, density, and kinematic viscosity, respectively. For a liquid jet evaporating
with a flux m, the jump condition and the normal stress balance on the interface are given by

(Lian and Reitz, 1993):
m=p,(w,-w )n=p, (W, -w, )n, 6))
n'z(wg—w,)-n+[n-('cg —T,)J-n+0‘V-n=O, 6
where ©, T, W, and n denote the surface tension coefficient, the stress tensor including the

pressure component, the interface velocity, and the outward unit normal, respectively. The first



term on the left-hand side of (6) is the recoil force on the jet due to surface evaporation. This
force stems from a net momentum that is impacting the surface. Eliminating w; in (5) yields:
W, -w,)n=" 1—p—g]. 0
pg p ! )
In this study we consider p,<<p;, therefore the effects of the fluctuations in the ambient gas

pressure may be neglected in comparison to the effects of the pressure fluctuations in the liquid.
Further, the mean pressure of the gas affects only the mean pressure of the jet and, for
incompressible liquid, does not influence the instability of the jet. As a result, we can neglect the
ambient gas pressure and, for inviscid gas, eliminate T, from (6). Then, by implementing (7), (6)

yields:

n-*c,'n=oV-n+—'11-. 8)
Pe

This simplifies the problem significantly, as there will be no need to solve for the gas phase. It
must be noted that, in this manner the mean pressure of the jet is calculated relative to the mean
pressure of the ambient gas.

There is no analytical solution for evaporation of a jet with a perturbed surface.
However, following Lian and Reitz (1993) one may approximate the unit area evaporation rate
of a wavy curved surface of local radius of curvature R. with that of a sphere of the same radius.
In this study, assuming that the surface temperature of the jet is always at the boiling temperature

T}, the flux of evaporation is modeled as:
rh=Rg for R, >0, 9)

where,



0 =—[—gg—)ln[l+£’ig(§°—i2:|(l+0.276 Re,"Pr. "), (10)
P v
where K, C,, and L, denote the thermal conductivity, the specific heat, and the latent heat of
evaporation, respectively. The Reynolds number, Re, and the Prandtl number, Pr, are defined as
Re=2Ur /v, and Prg=p,v,Cpe/%,. Equations (9) and (10) are a modified form of the d*-law for
evaporation of a single drop in zero gravity (Williams 1985 and Turns 1996). The modification,
here, is by substituting the local radius of curvature of the perturbed jet for the radius of the
spherical drop. This modification was first introduced by Lian and Reitz (1993). The physical
reasoning is that the surface of the deformed jet may be “locally” considered as the surface of a
spherical drop having the same radius of curvature. It is noted that the utilization of (9) is
limited to surface deformations such that R, > 0.

In the remaining equations (for the liquid phase) an axisymmetric incompressible
Newtonian liquid jet in zero gravity is considered. The variables are non-dimensionalized by the

undisturbed jet radius r,, and the characteristic time (pro3/0')l/‘. The dimensionless continuity and

momentum equations are:

V-v=0, an
Re(?—‘:+v-Vv)=V-T, (12)
ot J

where v=w=(y,v) is the velocity vector and TE‘CF-pI+[VV+(VV)T] is the stress tensor for a
Newtonian fluid with p now denoting the normalized liquid pressure. The Reynolds number in
(12) is defined as Re=(1/v,)(6r0/p1)'/’. Non-dimensionalizing (8) the stress balance on the
interface yields:

T-n=Re(K +ak’)n, (13)



where K is the curvature of the surface and

a=t, g2 _ P (14)
s (plroo-)E pl

As a result of the non-dimesionalization, the parameters affecting the instability of an
evaporating jet reduce to Reynolds number Re, the dimensionless evaporation rate 3, and the
density ratio s. In the next section we investigate the effects of these parameters as well as the
effects of initial disturbance amplitude €, and wavenumber k via numerical simulation.

In this investigation it is assumed that the free surface can be represented by a height

function A(z,f), as shown in Fig. 1, thus the curvature K is calculated using:

oo b 1

(+n2)" _h(1+h§)’2'

Since a temporal analysis is considered symmetry boundary conditions can be applied on the axis

(15)

and planes of symmetry:
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Figure 1: Fluid subvolumes represented by their height and thickness.



ou

—=0 and v=0, at r=0 (16)

or

u=0 and ﬁ=0, at z=0,&. a7
0z 2

A Galerkin finite element method is used to solve (11) and (12). Using a penalty function
formulation (Hughes, Liu and Brooks 1979), the pressure term is eliminated from the set of
unknown variables by absorbing the continuity equation into the momentum equation. In this
formulation the pressure is defined as:

p=-YV.v, (18)
where Y is a large number of order (10%) depending on viscosity and Reynolds number. Four-
node bilinear isoparametric elements are used to approximate the velocity distribution over each

element:
4
v(rzt)= Y V,(ON,(r,z1). (19)
i=1

A moving mesh is considered to discretize the computational domain making the shape
functions, N;, time dependent. In order to obtain the finite element formulation, (12) is
multiplied by the shape function N; and integration is carried over the element volume. After the

divergence theorem is invoked the resulting equation is:
v r 1 _
Lm(N jRe(—a—;+ v-Vvy ]+ VNT. E 1+ [ov+@vy ]]/ dQ = jm) N,T-ndr, (20)

where € is the volume and I is the surface area of the element. Through substitution of (13) and

(18) into (20) we obtain the following closed form finite element formulation:

fm{N jRe(%; tv VV]+ VNT [y (- v+ v+ vy ]ndQ =[N ,Re(K +aK?ndl. (21)
/




The above formulation is based on a fixed mesh. In the present problem the mesh is moving,
therefore special treatment of the time derivatives is required. Since the shape function is time

dependent, the time derivative of velocity in discretized form becomes:
ov & dv, &, (ON,

)R
The last term of (22) introduces a new convective term in (21). Here, we allow the motion of the
nodes in the r-direction only, according to the following simple rule:

zi(t+8)=z/(f)=constant, ri(t+dt)=cri(t), (23)
where the subscript i refers to the node number, and c=c(z,f) is a constant for each column of
nodes in the radial direction defined as:

c = h(z,t +8t)h(z,1). (24)

In this case, Mashayek and Ashgriz (1993) have shown that the total derivative of velocity
becomes:

&_av_*_[v_c_-l ov oV 25)

Dt ot o Jor Yo

Substitution of (25) into (21) completes the finite-element formulation for the present problem.
The free surface of the jet is determined using the Height Flux Method (HFM) developed
by Mashayek and Ashgriz (1993). As shown in Fig. 1 the domain is divided into several vertical
subvolumes of width 8z; and volume V;. The location of the free surface on the left and right
hand sides of a subvolume is given by &; and h;,; at time ¢z, respectively. At the end of each time
step fluxes of the fluid from each subvolume to its neighboring subvolumes are calculated using
the velocity field determined by the finite element solution of the governing equations. Next,

with the knowledge of the evaporation rate, the volume change 8V, of each subvolume due to

evaporation at the interface is calculated using:




8V, = 2n(—’3-15ﬂJx B &L &, 26)

where 8l indicates the length of the interface confined within the subvolume. The volume of
fluid within each subvolume is further modified by calculating the flow through the side planes.
Then, it is assumed that the part of the interface located between any neighboring pair of
subvolumes can be approximated by a line segment described as h=az+b, where a and b are
constants which can be determined by the known volumes. More details and the accuracy of this

method are discussed by Mashayek and Ashgriz (1993).

Mesh Size 4x30 4x40 4 x50 4 x 60
Growth Rate 0.712 0.712 0.712 0.712

Table 1: Typical convergence test for growth rate: Re=200, £,=0.05, k=0.7, B=3x10'2, and s=107.

Before numerical results were compiled a convergence study was performed to determine
the effect of mesh size on growth rate. The results are shown in table 1. From this we conclude
that grid size does not affect growth rate since only the height of the free surface at the neck and
swell where of importance for calculating this value. To save computational time the majority of
cases were ran with a minimal number of elements. The mesh size for the determination of
growth rate was limited to four elements in the radial direction and the axial elements were
changed based on the wavenumber as given in table 2. For the cases where pressure distribution

and velocity vectors were plotted the grid was refined in order to obtain better print quality and

color dispersion.
Wavenumber 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Number of elements 50 40 40 30 30 20 20

Table 2: Number of axial elements used in simulations for determination of growth rate.

10




3. Effect of Evaporation on Jet Instability

We consider the temporal evolution of a liquid jet, initially at rest with a spatially
harmonic surface described as:

r=R-g,cos(kz), (27)

where R is determined such that the volume of the jet is kept constant when the initial amplitude

is changed:

R=(-1e2)". (28)

Due to symmetry, only half a wavelength is considered. The trough (neck) of the initial surface
is set at z=0 and the crest (swell) at z=A/2. The dynamics of this jet due to capillary and recoil
forces are investigated for various values of dimensionless evaporation rate, density ratio,

Reynolds number, disturbance wavenumber, and initial disturbance amplitude.

Detailed description of the shape evolution of liquid jets with Re=200 and 10 is presented
in Figs. 2 and 3 for k=0.7,0.4 and =0, 102, and 3x102. The following characteristics for the
breakup of an evaporating capillary jet can be observed from Figs. 2 aﬁd 3: (i) As evaporation
rate increases the breakup time decreases; (ii) As Reynolds number decreases the breakup time
increases; (iii) The length and diameter of the liquid ligément decreases with increasing
evaporation rate and decreasing Reynolds number; (iv) The breakup point is closer to the initial
trough as evaporation rate increases, due to the decrease in time that nonlinear effects can
influence jet breakup. A more detailed description of these characteristics is given in the

following sections.
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Figure 2: Time evolution of the instability, Re=200, €,=0.5, s=107: (@) k=0.7, B=0; (b) k=0.7,
B=107 (¢) k=0.7, B=3x10%; (d) k=0.4, B=0; (e) k=0.4, B=10%; () k=0.4, B=3x10~

3.1 Location of the breakup point

Linear theory predicts that the breakup point is always at the trough of the initial

disturbance where the initial jet radius is minimum. However, Figs. 2 and 3 clearly show that the
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B=10%; (¢) k=0.7, B=3x102%; (d) k=0.4, P=0; (¢) k=0.4, B=10"; (f) k=0.4, B=3x107.

breakup point moves in the direction of the swell towards the end of the simulation. The
capillary forces on the jet tend to “squeeze” the liquid in the neck region into the swell. This
results in the formation of two distinct regions in the jet. The middle region where the curvature
in the r-z plane is very small, resembling a liquid ligament, and the swell region where the

curvature in the r-z plane is large. Note from Figs. 2 and 3 that the disturbances stay sinusoidal
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for a very long time (relative to the breakup time) and agree with linear theory until non-linear

effects begin to move the location of the minimum radius.

In order to gain a better understanding of the development of the breakup point of the jet,
we have plotted the motion of the minimum radius along the jet from time #=0 to the breakup

time. This plot is shown in Fig. 4 for a jet with Re=200, £,=0.05, s=10'3, and for three different

evaporation rates. Two distinct time periods can be identified for each of the curves in these
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Figure 4: Motion of the minimum radius along the jet axis: (@) B=10%; (b) B=2x10% (c) B=3x10
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figures. The most important being the time that the minimum point stays at z=0. This time
represents over 90% of the total breakup time in all cases and it first reduces and then increases
with an increase in the wavenumber. The case with the maximum disturbance growth rate is the
first to begin movement away from z=0. The second distinct time period represents the rapid
movement of the minimum jet radius from the neck towards the swell region. This sudden
‘relocation of minimum point in the axial direction is larger for smaller wavenumbers. The end
points on all the curves in Fig. 4 represent the breakup times. There are two interesting features
to note from Fig. 4. The first is that as evaporation rate increases the location of the minimum
point is closer to the neck for each wavenumber. This represents the production of a smaller
middle ligament or satellite drop. The second feature reveals that as evaporation rate increases

the range of time that each wavenumber breaks away from z=0 reduces.

3.2 Growth rate of the disturbances

Linear theory not only defines the region of unstable disturbance wavenumbers but also
provides their growth rates. These growth rates are useful in estimating the breakup time and
length. According to linear theory the variation of the logarithmic value of the amplitude of the
surface disturbances with time is linear. However, for an actual liquid jet this amplitude
variation is nonlinear at the beginning of the simulation due to the fact that radial velocity of the
jet starts from zero. The amplitude variation is nonlinear also near the breakup point due to the
movement of the minimum radius. For a selected few of our simulations we have plotted the

logarithmic values of the normalized amplitudes of the neck ((Re-rn)le,), swell ((rs-Re)/e,), and

their difference ((r,-r,)/e,) in Fig. 5. Here, r, and r; are the radii of the neck and swell,
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Figure 5: Variation of the amplitude of the neck (black), swell (red), and their logarithmic
difference (green), Re=200, £,=0.5, s=10: (@) k=0.4, =10 (b) k=0.7, B=10%; (c) k=0.4,
B=2x10%; (d) k=0.7, B=2x10%; (¢) k=0.4, B=3x10%; () k=0.7, B=3x102.

respectively, and R, is the instantaneous radius of the equivalent cylindrical jet, which changes

during the simulation due to evaporation. Notice in Fig. 5 that the logarithmic variation of
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amplitude of the neck or swell is not perfectly linear. Figure 5 reveals interesting features for the
temporal evolution of amplitudes of the neck and the swell with respect to each other. Initially
the growth rate of the neck point is larger than the growth rate of the swell point, since a radial
displacement in the neck region corresponds to a smaller radial displacement in the swell region
for the same volume displacement. Due to the formation of a liquid ligament, i.e. minimum
radius point moving away from the neck, the growth rate of the amplitude of the neck decreases
eventually dropping below that of the swell for the longer wavelengths. This is clearly shown in
Fig. 5a,c,e, which also indicates that as we increase the evaporation rate the time after the cross
point is reduced. This represents the formation of a smaller liquid ligament, which can be seen
in Figs. 2 and 3. Figure 5b,d,f is representative of smaller disturbance wavelengths. Due to the
reduced time of breakup non-linear effects are only visible in the last instances of instability.
Comparing Fig. 5a,c,e with 5b,d,f we see that the shape of the difference curve varies only in

slope when a change in wavenumber is made.

Similar to previous research in this area we use the linear region of the difference curve
to provide values that can represent the growth rate for each wavenumber. Therefore, a line is fit
to the difference between the amplitudes of the neck and swell and its slope is measured. The
line is fit only to the middle region of each curve and the end portions are ignored. The
dispersion curves are obtained using the calculated values of the growth rate for different
wavenumbers and for various values of B, Re, €, and s. The data are plotted in Fig. 6. As
mentioned earlier Fig. 6a shows quantitatively that as we increase the evaporation rate the
growth rate increases therefore reducing the time it takes for the jet to breakup into droplets. All
curves in Fig. 6a give the maximum growth rate at k=0.7, similar to linear theory. Figure 6b

presents the effects of Reynolds number on growth rate of disturbances. Here we can clearly

17
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Figure 6: Growth rate of disturbances: (@) Re=200,£,=0.05,5=10"; (b) £0=0.05,B=3x10"2,s=10‘3;
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identify for evaporating jets that as we decrease the Reynolds number the growth rate of

disturbances decreases due to the more viscous nature of the jet not allowing the fluid to be
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displaced as easily. Also from this graph we see a movement of the maximum growth to a lower
wavenumber for the case of highly viscous fluids. Figure 6¢c demonstrates the effects of initial
disturbance amplitude on growth rates. As mentioned earlier, linear theory assumes infinitesimal
initial disturbance amplitude. Therefore, for large initial disturbance amplitudes the theoretical
solutions result in large errors. We see from Fig. 6¢ that as we increase this value growth rate
decreases at each wavenumber. However, this does not mean that the jet will take longer to
breakup for large initial disturbance amplitudes. This figure only gives meaning to the rate and
not the overall distance that the radius has to decrease in order to pinch off the jet. Figure 6d
provides insight into the effect of the density ratio on growth rate. Here we clearly see that as we
increase the density of the gas or decrease the density of the liquid (i.e. larger s) the growth rate
of the evaporating jet decreases. This can be explained through the reduction of the recoil force,

where the net momentum imparted on the surface is diminished by increasing s (see (13)).

Figure 6e shows the results from Lian and Reitz’s (1993) linear stability analysis for an
evaporating viscous jet with 5=0.25x107%, Weg=104, and Z=10", where We, represents the
Weber number and Z represents the Ohnesorge number. Since we do not solve for the gas phase
we must convert their formulation to agree with our input parameters. For the case shown in Fig.
6e this would result in a Re=20,000 due mainly to their very small value for density ratio (e.g. s
for air and water would be approximately 1.2x10). Using this Reynolds number and similar
values of s and B we attempted to correlate a direct comparison but was unable to reproduce their
results. The calculated growth rates in our simulations were very similar to cases with no
evaporation. Only when we increased P to around 5x107 did we obtain growth rates larger than
that of non-evaporating cases. Although we could not reproduce the exact 'results from the

analytical study, even using the same parameters, we both conclude the same general trends for
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growth rate. As evaporation rate increases growth rate increases for every wavenumber. One
possible reason for the discrepancies between our results and theirs is the linear theory’s
assumption of infinitesimal disturbance amplitude. For non-evaporating jets the growth rate
does not vary up to an initial disturbance amplitude of approximately 0.05. However, Fig. 6¢c
clearly shows that the growth rate varies in this region for evaporating jets. From this one may
question the validity of the normal mode method for evaporating jets. Another possible reason
for the differences can be tracked to their initial conditions where at =0 the free surface is
moving but there is no internal flow field. We could not produce such initial condition in our

numerical simulations.

3.3 Breakup time and volume

Linear theory predicts that the minimum breakup time occurs at k=0.697, which
corresponds to the wavenumber with the maximum growth rate. However, this is only true for
€,—0, otherwise the minimum breakup time occurs at higher values of k as explained by
Chaudhary and Redekopp (1980). In the simulations presented in Fig. 7a,b,c,d the initial
disturbance amplitude equals 0.05 therefore most of our curves give a minimum breakup time for
k=0.8. From Fig. 7a we can quantitatively deduce that as we increase the evaporation rate we
decrease the breakup time, which has been demonstrated by other graphs presented earlier. This
is due to the fact that the addition of recoil force has a destabilizing effect for low speed jets,
which we are considering in this study. Also evaporation decreases the mean radius of our jet
with time. Figure 7b clearly shows that as we decrease the Reynolds number breakup time

increases, which is due to the additional viscous damping. This result is also in agreement with
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previous observation for non-evaporating jets in the Reyleigh regime (Mashayek and Ashgriz
1995). Another important point to note is that the minimum breakup time shifts to lower
wavenumbers as Re is significantly reduced. This is in accordance to linear theory which states
that the maximum growth rate shifts toward the lower wavenumbers for more viscous liquid jets.
Even though our cases involve evaporation, Fig. 7c still re-emphasizes Chaudhary’s results by

showing that as €&, increases from zero the minimum breakup time occurs at higher

wavenumbers. For example, for €,=0.5 the minimum breakup time occurs at k=0.9 but for
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€,=0.001 this happens at k=0.8. Clearly, from Fig. 7c we notice as initial disturbance amplitude

increases breakup time decreases. From inspection of Fig. 7d we can dissimulate that an

increase in density ratio increases breakup time due to the diminishing of the recoil force.

Breakup volume, the instantaneous combined volume of both the main drop and the
satellite drop at breakup, is primarily dependent on jet breakup time. If it takes longer for jet
breakup to occur then the jet is allowed more time to evaporate. Beginning with an initial
normalized jet volume of one, Fig. 8 shows the final volume of the jet while varying different

parameters. Analysis of the results from each graph gives similar conclusions to that described

for the breakup time.
(@) ®
1 ; . , 1
n . . - -
[} *
Q * < A *
g " : 2 A A " ' 4 Iy
= *
— A »
Qo * . .
> 05 | A 05 ' . .
[
M "
B =110 ® Re=1
®p=2x107 B Re=10
AB=3x10" A Re=200
0 . . . 0 . . .
0.2 0.4 06 0.8 1 0.2 0.4 0.6 0.8 1
(©) @
1 : - - 1
° ° ° [ ] ® [ ] [ ]
- - n n » - - " [ ] ] »
n ]
»
g . . * * . A A A A
g A
_— * A
o . * .
> 05 | . 1 05 A *
=y A A A *
.
2 A
m A
A=0001 Ws=ixl0”
®£,=005 As=Ix10”
we =02 ®s=ix10"
o 1 i 1 . €0=0‘5 0 1 1 1
0.2 0.4 06 08 1 02 0.4 0.8 08 1
Wavenumber Wavenumber

Figure 8: Breakup volume of jet: (@) Re=200,€,=0.05,5=10"%; (b) £,=0.05,=3x102,5=107; (c)
Re=200,8=3x107?,5=107; (d) Re=200,£,=0.05,p=3x102.

22




3.4 Drop size at breakup

The control of satellite drops has been one of the primary driving forces behind nonlinear
jet instability studies. For non-evaporating jets the total volume of a single wavelength of fluid
is constant throughout the breakup process and equal to the combination of the main drop
volume and satellite drop volume at breakup. However for evaporating jets the volume changes
in time and the total volume of the jet at any instant is equal to the initial jet volume minus the
total amount of evaporation up to that point. At breakup, the volume of an evaporating jet is
equal to the combined volume of both the main and satellite drops, where this total could be

significantly less than the initial volume depending on the evaporation rate and the breakup time. -
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Figure 9: Variation of drop size at breakup, Re=200,£o=0.05,s=10'3.
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Figure 9 plots the main and satellite drop radii versus wavenumber for B=102,2x102,3x10.
From this figure we see that, for small evaporation rate, as wavelength increases the drop size
generally increases, which is similar to non-evaporating jets. However, large evaporation rates
and small wavenumbers (i.e. k=0.3 for P=2x10 and k=0.3,04 for P=3x102) we notice a
decrease in both main and satellite drop size due to the increased breakup time, which allows
more vapor to leave the surface and reduce the overall jet volume. Two general conclusions
from Fig. 9 are: (i) as evaporation rate increases drop size decreases for all disturbance
wavenumbers, and (ii) comparing the percent reduction in drop size evaporation affects the
satellite drop more than the main drop (e.g. by increasing B by a factor of 3 at k=0.3 the main
drop radius reduces 38% and the satellite drop radius reduces 50%, or at k=0.9 this reduces the

main drop by 10% and the satellite drop by 29%).

3.5 Evaporation flux on free surface

In our evaporation model we approximate the unit area evaporation rate of our perturbed
jet surface with that of a sphere with the same local radius of curvature. Curvatﬁre of the jet
surface is determined by the height function using (15). To be in agreement with (9) the
curvature of the surface was monitored throughout simulations to prohibit negative values in
evaporation cases. Figure 10 shows the curvature of the jet versus the axial coordinate z for the
simulations presented in Fig. 2. In every case the curvature increases in the neck region as we
approach the breakup time. This translates to an increase in the evaporation mass flux as shown
in (26). That is, the evaporation flux at the neck is higher than that at the swell, leading to

further pinching of the neck. Also the recoil force is stronger in the neck region than that at the
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crest, causing the liquid to be squeezed into the crests and thus accelerating the growth of the

disturbance at the neck. The point of highest curvature in each set of data represents the
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instantaneous minimum radius of curvature. At the breakup time we see a drastic increase in the
curvature which is associated with the breakup point. By investigating Fig. 10a,c,e we can easily

see that the breakup point is closer to the neck for increasing evaporation rates.

3.6 Pressure and velocity distributions

To provide further insight into the dynamics of the jet the velocity and pressure
distributions within the liquid jet have been investigated. Figure 11 shows the pressure
distribution and velocity vectors at three different non-dimensional times for a non-evaporating
jet. At all the times shown we can easily see the flow of the fluid from the neck to the swell.
With increasing surface deformation a significant increase of velocity in the neck region takes
place. Initially the pressure distribution is uniform within the jet but as the velocity field
develops we can clearly identify areas of low and high pressure. At the final time shown, which
is near the breakup time, we can distinguish a high-pressure region at the top of the swell due to
the conversion of velocity to pressure. The middle ligament exhibits a lower pressure where the
velocities are higher. For comparison Fig. 12 gives the results for an evaporating jet with similar
parameters as Fig. 11. From the legend we see that the evaporating case produces a higher
overall pressure, which is due to the contribution of both capillary and recoil forces. We can
clearly identify the recoil force in both the middle ligament and the main drop of our jet where
we see a higher pressure along the surface. It should be mentioned that in Figs. 11 and 12 the

velocity vectors have been scaled in each of the 3 non-dimensional times for clarity.

By increasing the disturbance wavelength and decreasing the initial disturbance

amplitude our code has been able to predict multiple satellite drops, which has been investigated
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experimentally by Vassallo and Ashgriz (1991). Figures 13 and 14 give insight into the

differences seen between non-evaporating and evaporating jets under these conditions. From the
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Figure 12: Pressure distribution and velocity vectors for an evaporating jet, Re=200, k=0.7,
£,=0.05, B=3x1072, =107,

non-evaporating case, Fig. 13, we notice that nonlinear effects have drastically influenced the
surface shape near breakup. Here we can identify a main drop and, possibly, multiple satellite

drops which after breakup would either combine and oscillate or separate. Investigating Fig. 14

28




Figure 13: Formation of multiple satellite drops for a non-evaporating jet, Re=200, k&=0.3,
£,=0.001, B=0, s=10".

Figure 14: Formation of multiple satellite drops for an evaporating jet, Re=200, k=0.3, £,=0.001,
B=107, s=107.

for evaporating case, we see a different surface shape due to the relocation of the breakup point
close to the initial neck. This jet creates one small liquid ligament and two larger bulged

volumes of liquid, which would continue to interact after breakup.

4. Conclusion

Numerical simulation is used to investigate the instability of evaporating capillary jets.
The evaporation model is based on the d*-law, widely used for spherical drops. To implement

this model for perturbed jets, the conventional d*-law is modified by substituting the local radius
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of the surface for the radius of a sphere. The need for a solution for the ambient gas is
eliminated considering small density ratios. Numerical simulations are carried out using a
Galerkin finite element method with penalty function. The motion of the free surface is tracked
using the Height-Flux Method developed by Mashayek and Ashgriz (1993). With this technique,
the evaporation at the surface is easily handled by modifying the amount of fluid within each
subvolume. Preliminary simulations were performed to establish the required mesh size and

time increment for various cases.

In non-dimensional form, the formulation involves five parameters: the amplitude of the
initial surface disturbance, the wavenumber of the initial surface disturbance, the Reynolds
number, the non-dimensional evaporation rate, and the density ratio. A wide range of variation
for each of these parameters is considered in numerical simulation. The results were discussed
for various cases leading to the foremost conclusion that evaporation clearly has an effect on jet
instability, mainly increasing the growth rate of the disturbances by increasing the evaporation
flux at the neck. Thus, evaporation causes the jet to break up sooner and reduces the size of both
main and satellite drops. An increase in internal pressure is also noticed with evaporating cases
due to the contribution of both capillary and recoil forces. Due to the limited number of
evaporating jet instability studies the majority of our conclusions could not be compared to

experimental or analytical results.
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